Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37958551

RESUMO

Raman spectroscopy was applied to study the structural differences between herpes simplex virus Type I (HSV-1) and Epstein-Barr virus (EBV). Raman spectra were first collected with statistical validity on clusters of the respective virions and analyzed according to principal component analysis (PCA). Then, average spectra were computed and a machine-learning approach applied to deconvolute them into sub-band components in order to perform comparative analyses. The Raman results revealed marked structural differences between the two viral strains, which could mainly be traced back to the massive presence of carbohydrates in the glycoproteins of EBV virions. Clear differences could also be recorded for selected tyrosine and tryptophan Raman bands sensitive to pH at the virion/environment interface. According to the observed spectral differences, Raman signatures of known biomolecules were interpreted to link structural differences with the viral functions of the two strains. The present study confirms the unique ability of Raman spectroscopy for answering structural questions at the molecular level in virology and, despite the structural complexity of viral structures, its capacity to readily and reliably differentiate between different virus types and strains.


Assuntos
Infecções por Vírus Epstein-Barr , Herpes Simples , Herpesvirus Humano 1 , Humanos , Herpesvirus Humano 4 , Multiômica
2.
ACS Infect Dis ; 9(11): 2226-2251, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37850869

RESUMO

The latest RNA genomic mutation of SARS-CoV-2 virus, termed the Omicron variant, has generated a stream of highly contagious and antibody-resistant strains, which in turn led to classifying Omicron as a variant of concern. We systematically collected Raman spectra from six Omicron subvariants available in Japan (i.e., BA.1.18, BA.2, BA.4, BA.5, XE, and BA.2.75) and applied machine-learning algorithms to decrypt their structural characteristics at the molecular scale. Unique Raman fingerprints of sulfur-containing amino acid rotamers, RNA purines and pyrimidines, tyrosine phenol ring configurations, and secondary protein structures clearly differentiated the six Omicron subvariants. These spectral characteristics, which were linked to infectiousness, transmissibility, and propensity for immune evasion, revealed evolutionary motifs to be compared with the outputs of genomic studies. The availability of a Raman "metabolomic snapshot", which was then translated into a barcode to enable a prompt subvariant identification, opened the way to rationalize in real-time SARS-CoV-2 activity and variability. As a proof of concept, we applied the Raman barcode procedure to a nasal swab sample retrieved from a SARS-CoV-2 patient and identified its Omicron subvariant by coupling a commercially available magnetic bead technology with our newly developed Raman analyses.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/genética , Análise Espectral Raman , RNA
3.
Sci Rep ; 13(1): 16577, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789046

RESUMO

The Omicron subvariants of SARS-CoV-2 have multiple mutations in the S-proteins and show high transmissibility. We previously reported that tea catechin (-)-epigallocatechin gallate (EGCG) and its derivatives including theaflavin-3,3'-di-O-digallate (TFDG) strongly inactivated the conventional SARS-CoV-2 by binding to the receptor binding domain (RBD) of the S-protein. Here we show that Omicron subvariants were effectively inactivated by green tea, Matcha, and black tea. EGCG and TFDG strongly suppressed infectivity of BA.1 and XE subvariants, while effect on BA.2.75 was weaker. Neutralization assay showed that EGCG and TFDG inhibited interaction between BA.1 RBD and ACE2. In silico analyses suggested that N460K, G446S and F490S mutations in RBDs crucially influenced the binding of EGCG/TFDG to the RBDs. Healthy volunteers consumed a candy containing green tea or black tea, and saliva collected from them immediately after the candy consumption significantly decreased BA.1 virus infectivity in vitro. These results indicate specific amino acid substitutions in RBDs that crucially influence the binding of EGCG/TFDG to the RBDs and different susceptibility of each Omicron subvariant to EGCG/TFDG. The study may suggest molecular basis for potential usefulness of these compounds in suppression of mutant viruses that could emerge in the future and cause next pandemic.


Assuntos
COVID-19 , Camellia sinensis , Catequina , Humanos , SARS-CoV-2/metabolismo , Chá/química , Camellia sinensis/metabolismo
4.
Bioengineering (Basel) ; 10(9)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37760169

RESUMO

Continuing caution is required against the potential emergence of SARS-CoV-2 novel mutants that could pose the next global health and socioeconomical threats. If virus in saliva can be inactivated by a beverage, such a beverage may be useful because the saliva of infected persons is the major origin of droplets and aerosols that mediate human-to-human viral transmission. We previously reported that SARS-CoV-2 was significantly inactivated by treatment in vitro with tea including green tea and black tea. Catechins and its derived compounds galloylated theaflavins (gTFs) bound to the receptor-binding domain (RBD) of the S-protein and blocked interaction between RBD and ACE2. Black tea is often consumed with sugar, milk, lemon juice, etc., and it remains unclarified whether these ingredients may influence the anti-SARS-CoV-2 effect of black tea. Here, we examined the effect of black tea on Omicron subvariants in the presence of these ingredients. The infectivity of Omicron subvariants was decreased to 1/100 or lower after treatment with black tea for 10 s. One or two teaspoons of milk (4~8 mL) completely blocked the anti-viral effect of a cup of tea (125 mL), whereas an addition of sugar or lemon juice failed to do so. The suppressive effect was dose-dependently exerted by milk casein but not whey proteins. gTFs were coprecipitated with casein after acidification of milk-supplemented black tea, strongly suggesting the binding of gTFs to casein. The present study demonstrates for the first time that an addition of milk cancelled the anti-SARS-CoV-2 effect of black tea due to binding of casein to gTFs.

5.
Int J Mol Sci ; 24(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37628838

RESUMO

Hydrolytic reactions taking place at the surface of a silicon nitride (Si3N4) bioceramic were found to induce instantaneous inactivation of Human herpesvirus 1 (HHV-1, also known as Herpes simplex virus 1 or HSV-1). Si3N4 is a non-oxide ceramic compound with strong antibacterial and antiviral properties that has been proven safe for human cells. HSV-1 is a double-stranded DNA virus that infects a variety of host tissues through a lytic and latent cycle. Real-time reverse transcription (RT)-polymerase chain reaction (PCR) tests of HSV-1 DNA after instantaneous contact with Si3N4 showed that ammonia and its nitrogen radical byproducts, produced upon Si3N4 hydrolysis, directly reacted with viral proteins and fragmented the virus DNA, irreversibly damaging its structure. A comparison carried out upon testing HSV-1 against ZrO2 particles under identical experimental conditions showed a significantly weaker (but not null) antiviral effect, which was attributed to oxygen radical influence. The results of this study extend the effectiveness of Si3N4's antiviral properties beyond their previously proven efficacy against a large variety of single-stranded enveloped and non-enveloped RNA viruses. Possible applications include the development of antiviral creams or gels and oral rinses to exploit an extremely efficient, localized, and instantaneous viral reduction by means of a safe and more effective alternative to conventional antiviral creams. Upon incorporating a minor fraction of micrometric Si3N4 particles into polymeric matrices, antiherpetic devices could be fabricated, which would effectively impede viral reactivation and enable high local effectiveness for extended periods of time.


Assuntos
Herpesvirus Humano 1 , Humanos , Compostos de Silício/farmacologia , Antivirais/farmacologia , DNA Viral
6.
Sci Rep ; 12(1): 11855, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879338

RESUMO

The coronavirus disease 2019 (COVID-19), caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains to spread worldwide. COVID-19 is characterized by the striking high mortality in elderly; however, its mechanistic insights remain unclear. Systemic thrombosis has been highlighted in the pathogenesis of COVID-19, and lung microangiopathy in association with endothelial cells (ECs) injury has been reported by post-mortem analysis of the lungs. Here, we experimentally investigated the SARS-CoV-2 infection in cultured human ECs, and performed a comparative analysis for post-infection molecular events using early passage and replicative senescent ECs. We found that; (1) SARS-CoV-2 infects ECs but does not replicate and disappears in 72 hours without causing severe cell damage, (2) Senescent ECs are highly susceptible to SARS-CoV-2 infection, (3) SARS-CoV-2 infection alters various genes expression, which could cause EC dysfunctions, (4) More genes expression is affected in senescent ECs by SARS-CoV-2 infection than in early passage ECs, which might causes further exacerbated dysfunction in senescent ECs. These data suggest that sustained EC dysfunctions due to SARS-CoV-2 infection may contribute to the microangiopathy in the lungs, leading to deteriorated inflammation and thrombosis in COVID-19. Our data also suggest a possible causative role of EC senescence in the aggravated disease in elder COVID-19 patients.


Assuntos
COVID-19 , Trombose , Idoso , Suscetibilidade a Doenças/metabolismo , Células Endoteliais/metabolismo , Humanos , SARS-CoV-2 , Trombose/patologia
7.
ACS Infect Dis ; 8(8): 1563-1581, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35819780

RESUMO

Raman spectroscopy uncovered molecular scale markers of the viral structure of the SARS-CoV-2 Delta variant and related viral inactivation mechanisms at the biological interface with silicon nitride (Si3N4) bioceramics. A comparison of Raman spectra collected on the TY11-927 variant (lineage B.1.617.2; simply referred to as the Delta variant henceforth) with those of the JPN/TY/WK-521 variant (lineage B.1.617.1; referred to as the Kappa variant or simply as the Japanese isolate henceforth) revealed the occurrence of key mutations of the spike receptor together with profound structural differences in the molecular structure/symmetry of sulfur-containing amino acid and altered hydrophobic interactions of the tyrosine residue. Additionally, different vibrational fractions of RNA purines and pyrimidines and dissimilar protein secondary structures were also recorded. Despite mutations, hydrolytic reactions at the surface of silicon nitride (Si3N4) bioceramics induced instantaneous inactivation of the Delta variant at the same rate as that of the Kappa variant. Contact between virions and micrometric Si3N4 particles yielded post-translational deimination of arginine spike residues, methionine sulfoxidation, tyrosine nitration, and oxidation of RNA purines to form formamidopyrimidines. Si3N4 bioceramics proved to be a safe and effective inorganic compound for instantaneous environmental sanitation.


Assuntos
COVID-19 , Análise Espectral Raman , Cerâmica/química , Cerâmica/farmacologia , Humanos , Purinas , RNA , SARS-CoV-2/genética , Compostos de Silício , Tirosina
8.
Mol Med Rep ; 26(1)2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35593322

RESUMO

While cartilage can be produced from induced pluripotent stem cells (iPSCs), challenges such as long culture periods and compromised tissue purity continue to prevail. The present study aimed to determine whether cartilaginous tissue could be produced from iPSCs under hypoxia and, if so, to evaluate its effects on cellular metabolism and purity of the produced tissue. Human iPSCs (hiPSCs) were cultured for cartilage differentiation in monolayers under normoxia or hypoxia (5% O2), and chondrocyte differentiation was evaluated using reverse transcription­quantitative PCR and fluorescence­activated cell sorting. Subsequently, cartilage differentiation of hiPSCs was conducted in 3D culture under normoxia or hypoxia (5% O2), and the formed cartilage­like tissues were evaluated on days 28 and 56 using histological analyses. Hypoxia suppressed the expression levels of the immature mesodermal markers brachyury (T) and forkhead box protein F1; however, it promoted the expression of the chondrogenic markers Acan and CD44. The number of sex­determining region Y­box 9­positive cells and the percentages of safranin O­positive and type 2 collagen­positive tissues increased under hypoxic conditions. Moreover, upon hypoxia­inducible factor (HIF)­1α staining, nuclei of tissues cultured under hypoxia stained more deeply compared with those of tissues cultured under normoxia. Overall, these findings indicated that hypoxia not only enhanced cartilage matrix production, but also improved tissue purity by promoting the expression of HIF­1α gene. Potentially, pure cartilage­like tissues could be produced rapidly and conveniently using this method.


Assuntos
Cartilagem Articular , Células-Tronco Pluripotentes Induzidas , Cartilagem/metabolismo , Cartilagem Articular/metabolismo , Diferenciação Celular , Hipóxia Celular , Células Cultivadas , Condrócitos/metabolismo , Condrogênese/genética , Humanos , Hipóxia/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo
9.
Adv Sci (Weinh) ; 9(3): e2103287, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34877818

RESUMO

The multiple mutations of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus have created variants with structural differences in both their spike and nucleocapsid proteins. While the functional relevance of these mutations is under continuous scrutiny, current findings have documented their detrimental impact in terms of affinity with host receptors, antibody resistance, and diagnostic sensitivity. Raman spectra collected on two British variant sub-types found in Japan (QK002 and QHN001) are compared with that of the original Japanese isolate (JPN/TY/WK-521), and found bold vibrational differences. These included: i) fractions of sulfur-containing amino acid rotamers, ii) hydrophobic interactions of tyrosine phenol ring, iii) apparent fractions of RNA purines and pyrimidines, and iv) protein secondary structures. Building upon molecular scale results and their statistical validations, the authors propose to represent virus variants with a barcode specially tailored on Raman spectrum. Raman spectroscopy enables fast identification of virus variants, while the Raman barcode facilitates electronic recordkeeping and translates molecular characteristics into information rapidly accessible by users.


Assuntos
Teste para COVID-19 , COVID-19/diagnóstico , Proteínas do Nucleocapsídeo/química , SARS-CoV-2/química , Análise Espectral Raman , Glicoproteína da Espícula de Coronavírus/química , Humanos , Proteínas do Nucleocapsídeo/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Reino Unido
10.
Tissue Cell ; 71: 101574, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34214783

RESUMO

We investigated the effects of hypoxia-inducible factor (HIF)-1α on articular cartilage under mechanical stimulation and the associated mechanisms. Chondrocytes, isolated from articular cartilage from the knee, hip, and shoulder joints of Wistar rats, were subjected to 20 % tensile stress under hypoxic (5% O2) conditions for 24 h. HIF-1α and aggrecan expression was significantly enhanced with mechanical stimulation under hypoxia but not significantly altered with mechanical stimulation under normoxia. The nuclear translocation of HIF-1α was enhanced by mechanical stress under hypoxia. Under both normoxia and hypoxia, a disintegrin and metalloproteinase with thrombospondin motifs (ADAM-TS) 5 expression was significantly reduced with mechanical stimulation compared to that in the group without mechanical stimulation. However, HIF-1α knockdown mitigated changes in aggrecan and ADAM-TS5 expression mediated by mechanical stimulation under hypoxia. The effects of treadmill running on HIF-1α production in the articular cartilage of rat knee joints were also analyzed. HIF-1α production increased in the moderate running group and decreased to the same levels as those in the control group in the excessive running group. This suggests that HIF-1α regulates aggrecan and ADAM-TS5 expression in response to mechanical stimulation under hypoxia and general mechanical stimulation in articular cartilage under hypoxia, while controlling cartilage homeostasis.


Assuntos
Proteína ADAMTS5/biossíntese , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Regulação da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Animais , Cartilagem Articular/citologia , Hipóxia Celular , Condrócitos/citologia , Masculino , Ratos , Ratos Wistar
11.
Molecules ; 26(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208050

RESUMO

Potential effects of tea and its constituents on SARS-CoV-2 infection were assessed in vitro. Infectivity of SARS-CoV-2 was decreased to 1/100 to undetectable levels after a treatment with black tea, green tea, roasted green tea, or oolong tea for 1 min. An addition of (-) epigallocatechin gallate (EGCG) significantly inactivated SARS-CoV-2, while the same concentration of theasinensin A (TSA) and galloylated theaflavins including theaflavin 3,3'-di-O-gallate (TFDG) had more remarkable anti-viral activities. EGCG, TSA, and TFDG at 1 mM, 40 µM, and 60 µM, respectively, which are comparable to the concentrations of these compounds in tea beverages, significantly reduced infectivity of the virus, viral RNA replication in cells, and secondary virus production from the cells. EGCG, TSA, and TFDG significantly inhibited interaction between recombinant ACE2 and RBD of S protein. These results suggest potential usefulness of tea in prevention of person-to-person transmission of the novel coronavirus.


Assuntos
Antivirais/farmacologia , Biflavonoides/química , Catequina/química , Ácido Gálico/análogos & derivados , SARS-CoV-2/fisiologia , Chá/química , Replicação Viral/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Antivirais/química , Biflavonoides/farmacologia , COVID-19/patologia , COVID-19/virologia , Catequina/análogos & derivados , Catequina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Ácido Gálico/química , Ácido Gálico/farmacologia , Humanos , Mapas de Interação de Proteínas/efeitos dos fármacos , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Chá/metabolismo , Células Vero
12.
Pathogens ; 10(6)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201131

RESUMO

Saliva plays major roles in the human-to-human transmission of SARS-CoV-2. If the virus in saliva in SARS-CoV-2-infected individuals can be rapidly and efficiently inactivated by a beverage, the ingestion of the beverage may attenuate the spread of virus infection within a population. Recently, we reported that SARS-CoV-2 was significantly inactivated by treatment with black tea, green tea, roasted green tea and oolong tea, as well as their constituents, (-) epigallocatechin gallate (EGCG), theasinensin A (TSA), and galloylated theaflavins. However, it remains unclear to what extent tea inactivates the virus present in saliva, because saliva contains various proteins, nitrogenous products, electrolytes, and so on, which could influence the antivirus effect of tea. Here, we assessed whether tea inactivated the SARS-CoV-2 which was added in human saliva. A virus was added in healthy human saliva in vitro, and after treatment with black tea or green tea, the infectivity of the virus was evaluated by TCID50 assays. The virus titer fell below the detectable level or less than 1/100 after treatment with black tea or green tea for 10 s. The black tea-treated virus less remarkably replicated in cells compared with the untreated virus. These findings suggest the possibility that the ingestion of tea may inactivate SARS-CoV-2 in saliva in infected individuals, although clinical studies are required to determine the intensity and duration of the anti-viral effect of tea in saliva in humans.

14.
Sci Rep ; 6: 35314, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27752051

RESUMO

Multiple sclerosis (MS) is a T cell-mediated autoimmune disease. Fingolimod, a highly effective disease-modifying drug for MS, retains CCR7+ central memory T cells in which autoaggressive T cells putatively exist, in secondary lymphoid organs, although relapse may still occur in some patients. Here, we analyzed the T cell phenotypes of fingolimod-treated, fingolimod-untreated patients, and healthy subjects. The frequency of CD56+ T cells and granzyme B-, perforin-, and Fas ligand-positive T cells significantly increased during fingolimod treatment. Each T cell subpopulation further increased during relapse. Interestingly, T cells from fingolimod-treated patients exhibited interferon-γ biased production, and more myelin basic protein-reactive cells was noted in CD56+ than in CD56- T cells. It is likely that the altered T cell phenotypes play a role in MS relapse in fingolimod-treated patients. Further clinical studies are necessary to investigate whether altered T cell phenotypes are a biomarker for relapse under fingolimod therapy.


Assuntos
Cloridrato de Fingolimode/administração & dosagem , Imunossupressores/administração & dosagem , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Linfócitos T/efeitos dos fármacos , Adulto , Feminino , Humanos , Interferon gama/imunologia , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/imunologia , Esclerose Múltipla Recidivante-Remitente/patologia , Fenótipo , Esfingosina/imunologia , Linfócitos T/imunologia
15.
Int J Mol Sci ; 17(7)2016 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-27347945

RESUMO

Hyaluronic acid (HA) is used clinically to treat osteoarthritis (OA), but its pharmacological effects under hypoxic conditions remain unclear. Articular chondrocytes in patients with OA are exposed to a hypoxic environment. This study investigated whether hypoxia could potentiate the anabolic effects of exogenous HA in rat articular cartilage and whether these mechanisms involved HA receptors. HA under hypoxic conditions significantly enhanced the expression of extracellular matrix genes and proteins in explant culture, as shown by real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, and dimethylmethylene blue (DMMB) assays. Staining with Safranin-O and immunohistochemical staining with antibody to type II collagen were also enhanced in pellet culture. The expression of CD44 was increased by hypoxia and significantly suppressed by transfection with siRNAs targeting hypoxia-inducible factor 1 alpha (siHIF-1α). These findings indicate that hypoxia potentiates the anabolic effects of exogenous HA by a mechanism in which HIF-1α positively regulates the expression of CD44, enhancing the binding affinity for exogenous HA. The anabolic effects of exogenous HA may increase as OA progresses.


Assuntos
Cartilagem Articular/metabolismo , Ácido Hialurônico/farmacologia , Oxigênio/metabolismo , Animais , Cartilagem Articular/efeitos dos fármacos , Hipóxia Celular , Células Cultivadas , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Ratos , Ratos Wistar
16.
Cancer Sci ; 105(12): 1616-25, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25283373

RESUMO

RNAi enables potent and specific gene silencing, potentially offering useful means for treatment of cancers. However, safe and efficient drug delivery systems (DDS) that are appropriate for intra-tumor delivery of siRNA or shRNA have rarely been established, hindering clinical application of RNAi technology to cancer therapy. We have devised hydrogel polymer nanoparticles, or nanogel, and shown its validity as a novel DDS for various molecules. Here we examined the potential of self-assembled nanogel of cholesterol-bearing cycloamylose with spermine group (CH-CA-Spe) to deliver vascular endothelial growth factor (VEGF)-specific short interfering RNA (siVEGF) into tumor cells. The siVEGF/nanogel complex was engulfed by renal cell carcinoma (RCC) cells through the endocytotic pathway, resulting in efficient knockdown of VEGF. Intra-tumor injections of the complex significantly suppressed neovascularization and growth of RCC in mice. The treatment also inhibited induction of myeloid-derived suppressor cells, while it decreased interleukin-17A production. Therefore, the CH-CA-Spe nanogel may be a feasible DDS for intra-tumor delivery of therapeutic siRNA. The results also suggest that local suppression of VEGF may have a positive impact on systemic immune responses against malignancies.


Assuntos
Carcinoma de Células Renais/terapia , Ciclodextrinas/administração & dosagem , Neoplasias Renais/terapia , Neovascularização Patológica/terapia , RNA Interferente Pequeno/administração & dosagem , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Carcinoma de Células Renais/irrigação sanguínea , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Regulação Neoplásica da Expressão Gênica , Terapia Genética , Humanos , Neoplasias Renais/irrigação sanguínea , Neoplasias Renais/patologia , Camundongos , Nanogéis , Neoplasias Experimentais , Neovascularização Patológica/patologia , Especificidade de Órgãos , Polietilenoglicóis/química , Polietilenoimina/química , Microambiente Tumoral
17.
Ultrasonics ; 54(3): 874-81, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24291002

RESUMO

The goal of this feasibility study was to examine whether sonoporation assisted transduction of siRNA could be used to ameliorate arthritis locally. If successful, such approach could provide an alternative treatment for the patients that have or gradually develop adverse response to chemical drugs. Tumor necrosis factor alpha (TNF-α) produced by synovial fibroblasts has an important role in the pathology of rheumatoid arthritis, inducing inflammation and bone destruction. In this study, we injected a mixture of microbubbles and siRNA targeting TNF-α (siTNF) into the articular joints of rats, and transduced siTNF into synovial tissue by exposure to a collimated ultrasound beam, applied through a probe 6mm in diameter with an input frequency of 3.0 MHz, an output intensity of 2.0 W/cm(2) (spatial average temporary peak; SATP), a pulse duty ratio of 50%, and a duration of 1 min. Sonoporation increased skin temperature from 26.8 °C to 27.3 °C, but there were no adverse effect such as burns. The mean level of TNF-α expression in siTNF-treated knee joints was 55% of those in controls. Delivery of siTNF into the knee joints every 3 days (i.e., 7, 10, 13, and 16 days after immunization) by in vivo sonoporation significantly reduced paw swelling on days 20-23 after immunization. Radiographic scores in the siTNF group were 56% of those in the CIA group and 61% of those in the siNeg group. Histological examination showed that the number of TNF-α positive cells was significantly lower in areas of pannus invasion into the ankle joints of siTNF- than of siNeg-treated rats. These results indicate that transduction of siTNF into articular synovium using sonoporation may be an effective local therapy for arthritis.


Assuntos
Artrite/genética , Artrite/terapia , Eletroporação/métodos , Terapia Genética/métodos , RNA Interferente Pequeno/administração & dosagem , Sonicação/métodos , Transfecção/métodos , Animais , Artrite/patologia , Inativação Gênica , Masculino , Ratos , Resultado do Tratamento
18.
J Immunother ; 34(2): 139-48, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21304406

RESUMO

Interleukin-28B (IL-28B), also referred to as interferon-λ3, belongs to the type III interferon family. Earlier studies showed that IL-28B suppresses proliferation of some tumor cells in vitro. IL-28B gene transfection ex vivo also resulted in growth retardation of tumor cells in mice, through either direct antiproliferative action or induction of antitumor immunity. However, it has not been reported whether in vivo therapeutic administration of recombinant IL-28B can inhibit the growth of a pre-established tumor. Here, we found that repetitive subcutaneous administration of recombinant mouse IL-28B significantly induced tumor-specific cytotoxic T lymphocytes and augmented natural killer cytolytic activity, leading to moderate suppression of the growth of a murine head and neck squamous cell carcinoma (HNSCC) cell line that was completely resistant to the direct antiproliferative effect of IL-28B. Moreover, co-administration of recombinant mouse IL-28B and cisplatin (CDDP) more significantly inhibited in vivo growth of the tumor that had been established in syngenic mice and induced tumor-specific cytotoxic T lymphocytes. The CDDP treatment induced the expression of major histocompatibility complex class I and Fas molecules on the surface of HNSCC cells both in vitro and in vivo; this may be the mechanism underlying the synergistic tumor suppression activity of IL-28B and CDDP. Unlike type I interferon, IL-28B did not suppress growth of bone marrow cells in culture. Therefore, IL-28B may be useful as a tool for a novel multidisciplinary therapy against cancer, significantly potentiating innate and adaptive antitumor immune responses, especially when co-administrated with CDDP, which is currently the first choice chemotherapeutic agent against various tumors including HNSCCs.


Assuntos
Antineoplásicos , Cisplatino , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Interleucinas , Neoplasias de Células Escamosas/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Sinergismo Farmacológico , Feminino , Antígenos H-2/metabolismo , Neoplasias de Cabeça e Pescoço/imunologia , Interleucinas/farmacologia , Interleucinas/uso terapêutico , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Melanoma Experimental/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C3H , Neoplasias de Células Escamosas/imunologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor fas/metabolismo
19.
J Gastroenterol ; 45(6): 608-17, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20169455

RESUMO

BACKGROUND: Goblet cells, which contribute to mucosal defense and repair in the intestinal epithelium, are depleted in human and rodent colitis. The Notch signal pathway regulates the differentiation of intestinal stem cells into epithelial cells and inhibits the differentiation of secretory lineages, including goblet cells. The aim of our study was to clarify whether the blocking of the Notch pathway at an early stage of colitis would preserve goblet cells and facilitate the healing process in dextran sulfate sodium (DSS)-induced colitis in mice. METHODS: DSS was orally administered to C57/BL6 mice for 7 days, and dibenzazepine (DBZ), a Notch pathway blocker, was administered for 5 consecutive days, beginning on the first day of DSS treatment. Colonic mucosal inflammation was evaluated clinically, biochemically, and histologically. The expression of the goblet cell-associated genes Math1 and MUC2 and proinflammatory cytokines was evaluated by real-time reverse-transcriptase-PCR, with the expression of Math1 and MUC2 also visualized by immunohistochemical examination. RESULTS: The administration of DBZ at 4 mumol/kg significantly reduced the severity of the colitis. Compared with the DSS only-treated intestine, the number of goblet cells was relatively sustained, and the expression of Math1 and MUC2 was also elevated in the DSS/DBZ-treated intestine. DBZ treatment suppressed the mRNA levels for interleukin-1beta and -6, and matrix metalloproteinases-3 and -9 in the DSS-treated intestine. CONCLUSIONS: Early-stage blocking of Notch signaling may ameliorate acute DSS colitis by preventing reduction in the number of goblet cells.


Assuntos
Colite/tratamento farmacológico , Dibenzazepinas/farmacologia , Células Caliciformes/efeitos dos fármacos , Receptores Notch/efeitos dos fármacos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Colite/fisiopatologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células Caliciformes/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mucina-2/genética , Receptores Notch/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Índice de Gravidade de Doença , Transdução de Sinais/efeitos dos fármacos
20.
J Bone Miner Metab ; 27(4): 412-23, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19333684

RESUMO

To clarify the significance of the osteophytes that appear during the progression of osteoarthritis (OA), we investigated the expression of inflammatory cytokines and proteases in osteoblasts from osteophytes. We also examined the influence of mechanical stress loading on osteoblasts on the expression of inflammatory cytokines and proteases. Osteoblasts were isolated from osteophytes in 19 patients diagnosed with knee OA and from subchondral bone in 4 patients diagnosed with femoral neck fracture. Messenger RNA expression and protein production of inflammatory cytokines and proteases were analyzed using real-time RT-PCR and ELISA, respectively. To examine the effects of mechanical loading, continuous hydrostatic pressure was applied to the osteoblasts. We determined the mRNA expression and protein production of IL-6, IL-8, and MMP-13, which are involved in the progression of OA, were increased in the osteophytes. Additionally, when OA pathological conditions were simulated by applying a nonphysiological mechanical stress load, the gene expression of IL-6 and IL-8 increased. Our results suggested that nonphysiological mechanical stress may induce the expression of biological factors in the osteophytes and is involved in OA progression. By controlling the expression of these genes in the osteophytes, the progression of cartilage degeneration in OA may be reduced, suggesting a new treatment strategy for OA.


Assuntos
Interleucina-6/metabolismo , Interleucina-8/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Osteoartrite/metabolismo , Osteoblastos/metabolismo , Osteófito/patologia , Idoso , Idoso de 80 Anos ou mais , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Linhagem Celular , Células Cultivadas , Feminino , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/fisiologia , Humanos , Pressão Hidrostática , Interleucina-6/genética , Interleucina-6/farmacologia , Interleucina-8/genética , Masculino , Metaloproteinase 13 da Matriz/genética , Pessoa de Meia-Idade , Osteoartrite/patologia , Osteoblastos/efeitos dos fármacos , Osteocalcina/genética , Osteófito/metabolismo , Receptores de Interleucina-6 , Estresse Mecânico , Suporte de Carga/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...